یک روش هم محلی سینک برای معادلات انتگرال-دیفرانسیل فردهلم خطی

پایان نامه
  • وزارت علوم، تحقیقات و فناوری - دانشگاه محقق اردبیلی - دانشکده علوم
  • نویسنده زینب نیک پور
  • استاد راهنما محمد ضارب نیا
  • سال انتشار 1388
چکیده

در این پایا نامه، یک روش هم محلی با استفاده از توابع پایه ای سینک برای تقریب معادله انتگرال فردهلم نوع دوم، مسائل مقدار مرزی برای معادله انتگرال-دیفرانسیل فردهلم مرتیه نوع دوم و معادله انتگرال –دیفرانسیل ولترای مرتبه دوم توسعه شده است. روش سینک در حالتی که منفرد بودن در نقاط انتهایی رخ می دهد نسبت به روش های کلاسیک مزیت دارد. خواص روش هم محلی سینک لازم برای توسعه بعدی، ارائه شده و برای محاسبهٌ معادله انتگرال فردهلم و معادلات انتگرال-دیفرتنسیل مرتبه دوم با شرایط مرزی به معادلات جبری استفاده شده است. تعدادی مثال (معادله انتگرال فردهلم نوع دوم، مسائل مقدار مرزی همگن و غیر همگن) برای نشان دادن دقت و اجرای روش، آورده شده است.

منابع مشابه

روش هم محلی چندجمله ای های لژاندر برای تقریب جواب معادلات انتگرال- دیفرانسیل فردهلم خطی با تأخیر زمانی

هدف اصلی در این مقاله حل معادلات انتگرال- دیفرانسیل فردهلم خطی با تأخیر زمانی از مراتب بالا است. روش مبتنی بر بسط لژاندر با استفاده از نقاط هم محلی گاوس- لژاندر می باشد. در این روش سری لژاندر قطع شده جواب معادله را در نظر گرفته و معادله انتگرال- دیفرانسیل خطی و شرایط داده شده را به یک معادله ماتریسی تبدیل می کنیم، سپس با استفاده از نقاط هم محلی گاوس- لژاندر، معادله ماتریسی تبدیل به یک دستگاه از...

متن کامل

کاربرد روش هم محلی سینک برای حل معادلات انتگرال فردهلم غیر خطی

دراین پایان نامه روشی را برای حل معادلات انتگرال فردهلم پیشنهاد می کنیم . این روش بااستفاده از یک زوج مکمل مجموعه توابع متعامد مثلثی که از مجموعه توابع بلاک – پالس بدست آمده است ، نشان داده می شود . ماتریسهای عملیاتی برای انتگرال گیری ، حاصلضرب دوتابع مثلثی و فرمولهایی برای محاسبه انتگرال معین از آنها بدست آمده وبرای تبدیل حل معادله انتگرال فردهلم به حل معادلات جبری به کار برده می شوند . در ف...

15 صفحه اول

حل معادلات انتگرال-دیفرانسیل-تفاضلی خطی و معادلات انتگرال-دیفرانسیل فردهلم خطی مرتبه بالا با استفاده از روش هم محلی

در این پایان نامه یک روش هم محلی چبیشف برای حل معادله انتگرال-دیفرانسیل - تفاضلی خطی آمیخته به طوریکه ایکس کوچکتر مساوی صفر و m بزرگتر مساوی n تحت شرایط آمیخته و هم محلی لژاندر برای حل معادله انتگرال دیفرانسیل فردهلم خطی مرتبه بالاتر تحت شرایط آمیخته ارائه شده است. در این دو روش معادله ا با شرایط 2 و معادله 3 با شرایط 4 به معادله ماتریسی که متناظر با یک دستگاه معادله جبری خطی است تبدیل می شوند....

15 صفحه اول

یک روش هم محلی گسسته برای حل معادلات انتگرال-دیفرانسیل فردهلم با هسته منفرد ضعیف

برای حل معادلات انتگرال دیفرانسیل فردهلم با هسته منفرد ضعیف ابتدا معادله انتگرال دیفرانسل را با کمک فرمولهای تربیع(کوادراتور) بر پایه ضرب انتگرالی باز نویسی می کنیم. سپس یک روش هم محلی چند جمله ای تکه ای را روی یک شبکه مدرج به کار می بریم. با این روش ما قسمت های هموار انتگرال را بااستفاده از درونیابی چند جمله ای تکه ای تقریب می زنیم، و سپس از قسمت های باقیمانده انتگرال دقیق می گیریم.سپس همگرایی...

15 صفحه اول

حل عددی معادلات انتگرالی فردهلم خطی نوع دوم با استفاده از روش هم محلی سینک

ابتدا تقریب سینک را بررسی نموده سپس حل عددی معادلات انتگرال فردهلم نوع دوم را با استفاده از روش هم محلی سینک ارائه می دهیم. همچنین همگرایی تقریب سینک را برای این دسته از معادلات انتگرالی به صورت تحلیلی بررسی کرده و نشان می دهیم مرتبه همگرایی روش، نمایی و به صورت ((o(e^(-k?n است که k مستقل از n می باشد.

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه محقق اردبیلی - دانشکده علوم

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023